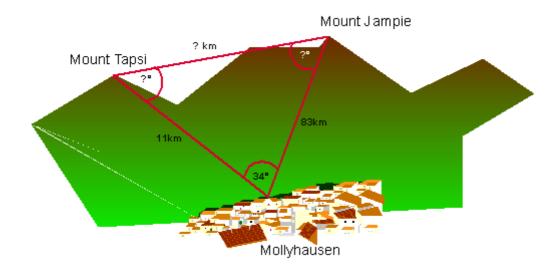
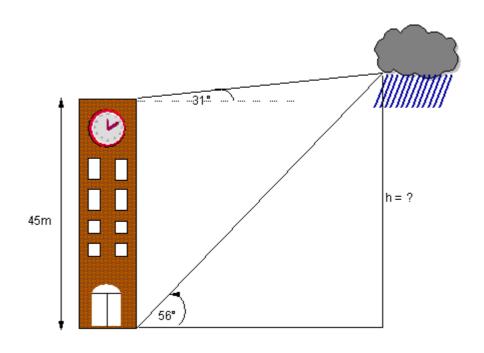
(Kossatz)


<u>Lösung:</u>

		Punkte
1	Bitte nennen Sie den Sinussatz. Wann kann man ihn anwenden, und wann nicht?	5
	$\frac{a}{\sin a} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \text{ oder}$	
	$\frac{\sin a}{\sin \beta} = \frac{a}{b}$	
	$\frac{\sin a}{\sin \gamma} = \frac{a}{c}$	
	$\frac{\sin\beta}{\sin\gamma} = \frac{b}{c}$	
	Anwendbar, wenn von zwei Seiten und den zwei ihnen gegenüberliegenden Winkeln drei Werte gegeben sind. Sonst nicht anwendbar.	
2	Von einer quadratischen Pyramide sind die Seitenlänge a des Basisquadrats und der Winkel ε von Kante und Basis gegeben. Quadratseite $a=1,2;$ Winkel Basis/Kante $\varepsilon=5,7^\circ;$ Bitte berechnen Sie L: Höhe $h=0,0847;$ Neigungswinkel Seite $\delta=8,0346^\circ;$ Volumen $V=0,0407;$ Oberfläche $O=2,8943;$ Kantenlänge $k=0,8527$ Seitenhöhe $h_s=0,6059;$ der Pyramide	6
3	Gegeben sind zwei Funktionen. Bestimmem Sie bitte Fläche und Umfang des Dreiecks, das die Schnittpunkte von f & g miteinander sowie den Scheitelpunkt von f als Ecken hat. $f(x) = -2x^2 - 2x + 12;$ $g(x) = 8x^2 - 2x + 2;$	14
	L: A (1; 8); B (-0,5; 12,5); C (-1; 12); Seiten: a = 0,7071; b = 4,4721; c = 4,7434 Umfang: U = 9,9227 Fläche: A = 1,5	


(Kossatz)

4	Sie sind in Mollyhausen und peilen von dort Mount Jampie und Mount Tapsi an. Der Winkel zwischen diesen beiden Peilungen ist 34°. Mount Jampie ist 83 km von Mollyhausen entfernt und Mount Tapsi 11km.	8
	a) Machen Sie eine Skizze der Situation.b) Wie weit sind Mount Jampie und Mount Tapsi voneinander entfernt?c) Unter welchen Winkeln sehen Beobachter auf den beiden Bergen Mollyhausen und den jeweils anderen Berg?	
	141,2407° bei Mount Tapsi 4,7593° bei Mount Jampie 74,1362 km	
5	Vom Fuß des Rathausturmes sehen Sie die Unterseite der Gewitterwolke unter einem Winkel von 56° (gemessen parallel zum Boden). Von der Turmspitze selber sehen Sie die Unterseite unter einem Winkel von 31° (gemessen parallel zum Boden). Der Rathausturm ist 45 m hoch.	4
	a) Machen Sie eine Skizze der Situation.b) Wie hoch ist die Unterseite der Wolke?	
	L: Wolkenhöhe = 75,6666m	
6	Von einem Dreieck sind die folgenden Größen (Winkel oder Seiten) gegeben. Berechnen Sie die jeweils fehlenden Winkel und Seiten.	6
	a) $\beta = 50^\circ$; $c = 3.3$; $\gamma = 69.6^\circ$; L: $a = 3.0613$; $\alpha = 60.4^\circ$; $b = 2.6971$;	
	b) $a = 3.4$; $\alpha = 71.7^{\circ}$; $b = 2.4$; L: $\beta = 42.0812^{\circ}$; $c = 3.277$; $\gamma = 66.2188^{\circ}$;	
	Von einem Dreieck sind die folgenden Größen (Winkel oder Seiten) gegeben. Berechnen Sie alle mögliche Lösungen für die jeweils fehlenden, soweit vorhanden.	10
	a) $a = 2.5$; $b = 3.8$; $c = 4.3$; L: $\alpha = 35.2738^{\circ}$; $\beta = 61.3753^{\circ}$; $\gamma = 83.3508^{\circ}$;	
	b) a = 1; α = 8,8°; b = 2,7; L:	
	(1) $\beta_1 = 24,3973^\circ$; $c_1 = 3,5789$; $\gamma_1 = 146,8027^\circ$; (2) $\beta_2 = 155,6027^\circ$; $c_2 = 1,7575$; $\gamma_2 = 15,5973^\circ$;	
	c) $a = 1$; $\alpha = 69.5^{\circ}$; $c = 4.9$; L:	
	Keine Lösung	

Zu 4) Hinweis: Die Skizze ist nicht maßstabsgetreu

Zu 5) Hinweis: Die Skizze ist nicht maßstabsgetreu

