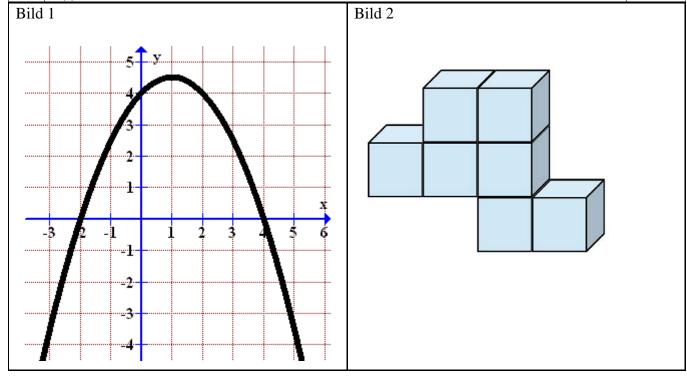
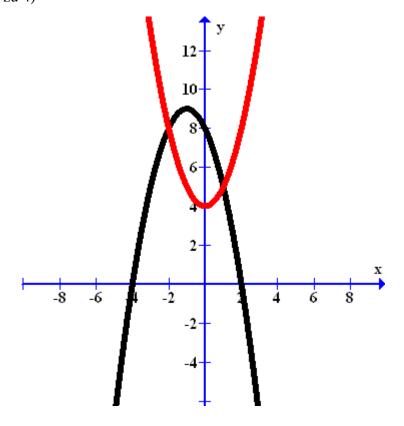
## Lösung:

|   |                                                                                                                                                                                                                                          | Punkte |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1 | Wie kann man Funktionen darstellen?                                                                                                                                                                                                      | 3      |
|   | <ul><li>graphisch im Koordinatensytem</li><li>als Wertetabelle</li><li>Formel/Regel</li></ul>                                                                                                                                            |        |
| 2 | P <sub>1</sub> (2; 30); P <sub>2</sub> (-4; 12); P <sub>3</sub> (-2; 2); P <sub>4</sub> (1; 17);                                                                                                                                         | 14     |
|   | Die Punkte P <sub>1</sub> , P <sub>2</sub> , P <sub>3</sub> beschreiben eine Parabel, die Punkte P <sub>3</sub> , P <sub>4</sub> eine Gerade.  Bestimmen Sie: - die Funktionsgleichungen von Parabel und Gerade  L:                      |        |
|   | $f(x) = 2x^2 + 7x + 8;$<br>g(x) = 5x + 12                                                                                                                                                                                                |        |
| 3 | Heute leben auf dem Bauernhof 25 Hühner und 61 Emus .  Die Anzahl der Hühner steigt in zwei Monaten um 37, die der Emus fällt in 6 Monaten um sechs.  Wann gibt es gleichviele Hühner und Emus ?  L:  1,8462 Monate  Wert: 59,1547 Tiere | 7      |
| 4 | Gegeben sind zwei Parabeln. Bitte berechnen Sie  - die Schnittpunkte der Parabeln miteinander  - die Achsenschnittstellen der Parabeln  - die Scheitelpunkte der Parabeln  - und zeichnen Sie die Parabeln                               | 17     |
|   | $f(x) = -x^2 - 2x + 8;$<br>$g(x) = x^2 + 4$                                                                                                                                                                                              |        |
|   | L:                                                                                                                                                                                                                                       |        |
|   | $S_{f/g1}$ (1; 5); $S_{f/g2}$ (-2; 8);                                                                                                                                                                                                   |        |
|   | Für $f(x)$ :<br>$x_{N1} = 2$ ; $x_{N2} = -4$ ;<br>$y_s = 8$ ;<br>$P_{Spkt}(-1; 9)$                                                                                                                                                       |        |
|   | Für g(x):<br>Keine Nullstellen;<br>$y_s = 4$ ;<br>$P_{Spkt}$ ( 0; 4 )                                                                                                                                                                    |        |
| 5 | Bitte bestimmen Sie die Funktionsgleichung der Parabel aus Bild 1<br>und berechnen Sie die Linearfaktorzerlegung der Parabel.<br>Geben Sie Krümmungs- und Steigungsverhalten der Parabel an.                                             | 11     |
|   | L:<br>$f(x) = -0.5(x+2)(x-4) = -0.5 x^2 + x + 4$<br>- rechtsgekrümmt<br>- steigend im Intervall $(-\infty; 1]$<br>- fallend im Intervall $[1; \infty)$                                                                                   |        |


(Kossatz)

6 Die Figur (Bild 2) besteht aus 7 identischen - aber veränderlichen - Würfeln. Bestimmen Sie die Gesamtoberfläche und das Volumen der Figur als Funktionen der Kantenlänge eines veränderlichen Würfels. 2


L:

 $O(a) = 28a^2;$ 

 $V(a) = 7a^3$ 



zu 4)

